Background: The world population's full immunization with vaccines against SARS-CoV-2 is still challenging. Therefore, more research must be needed to find an active antiviral drug against the virus, including new mutated strains.
Results: Therefore, this research analyzes 35 natural compounds isolated from various plants against SARS-CoV-2 main protease (Mpro) using an in silico strategy. According to the results, it was possible to identify promising molecules using a molecular docking strategy. Furthermore, the results showed that the interaction of these molecules with protease-specific residues, including (2S)-Eriodictyol 7-O-(6''-O-galloyl)-beta-D-glucopyranoside (Trp207, Ser284, and Glu288), Hypericin (Glu166, Arg188, and Thr190), Calceolarioside B (Gly143, Ser144, Cys145, Glu166, Arg188, and Gln192), Epicatechin (Ser144, His163, and Leu167) and Myricitrin (Thr190) with ΔG was -8.5, -9.6, -8.5, -9.3 and -9.3 kcal/mol, respectively. In addition, analyzing all compounds for their ADME properties shows that compounds present an excellent pharmacokinetic profile.
Conclusion: In conclusion, the results of this study indicated that these major natural compounds can be considered potential inhibitors of Mpro and should be further explored in vitro and in vivo in accordance with our data.
Keywords:
Published on: Aug 29, 2022 Pages: 38-45
Full Text PDF
Full Text HTML
DOI: 10.17352/ijpsdr.000041
CrossMark
Publons
Harvard Library HOLLIS
Search IT
Semantic Scholar
Get Citation
Base Search
Scilit
OAI-PMH
ResearchGate
Academic Microsoft
GrowKudos
Universite de Paris
UW Libraries
SJSU King Library
SJSU King Library
NUS Library
McGill
DET KGL BIBLiOTEK
JCU Discovery
Universidad De Lima
WorldCat
VU on WorldCat
PTZ: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."