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Nuclear Magnetic Resonance Spectroscopy is an effective physical method for metabolite fingerprinting, which involves the simultaneous and extensive analysis of
a wide variety of compounds. The main disadvantage of the method, which hinders the progress of NMR metabolomics, is the need for manual processing of complex
NMR spectra of biological samples. To automate the identification of metabolites in spectra, it is necessary to determine the parameters of the spin system of the
main metabolites found in the samples under study. To address this issue, we propose an optimization algorithm that autonomously optimizes all relevant spin system
parameters. The algorithm’s successful operation has been demonstrated on molecules of the most common amino acids found in NMR spectra of biological samples.
The developed algorithm produced a proline spin-spin coupling matrix that, when evaluated by the Intersection-over-Union metric, showed better consistency with five

experimental NMR spectra than literature matrices.

Introduction

Metabolomics is an omics technology that has broad
applications across various scientific fields and systems biology.
The study of metabolic profiles involves the measurement and
analysis of metabolites, including amino acids, carbohydrates,
and lipids derived from biofluids, plants, and cellular extracts.
It has been utilized to diagnose illnesses [1-3], explore disease
pathology [4], examine host-parasite interactions [5] and
monitor dietary impacts [6]. The significance of metabolomics
in drug discovery and disease diagnosis lies in its ability to
reflect direct changes in cellular activity through alterations in
the metabolome.

The use of NMR (Nuclear Magnetic Resonance) in
metabolomics and metabolic profiling is expanding rapidly,
alongside advances in methods for measuring, analyzing,
and interpreting complex datasets [7-15]. Metabolomics, also
referred to as metabonomics, encompasses a comprehensive set
of measurements on biological samples aimed at quantifying

as many metabolites as possible and assessing changes in
metabolite levels in response to external factors. In contrast,
metabolic profiling focuses on a narrower range of metabolites,
often tracking specific pathways. NMR is particularly effective
for metabolite fingerprinting, which involves the simultaneous
and extensive analysis of a wide variety of compounds [16].

Many programs have been developed to analyze the
composition of metabolites using NMR spectra of biological
fluids under study [17,18,20]. Nevertheless, the main tool
currently used is the ChenomX program, in which the search for
signals of metabolites in each spectrum is carried out manually
ChenomX publications. Manual search for metabolites in the
spectrum significantly slows down the analysis process and
is a source of errors in the data. Automating the search for
metabolites in the spectra is difficult because NMR spectra
often have a complex structure. Moreover, the specific type
of the metabolite spectrum may vary depending on the
composition of the entire sample [21]. The exact structure of
the NMR spectrum is determined by the matrix of the spin
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system, which contains the values of the chemical shift and
the spin-spin interaction constants between all 'H nuclei. The
authors [18] have developed the GISSMO package and a library
of matrices of spin systems of metabolites. However, the
calculation of the parameters of spin systems in the GISSMO
package is carried out mainly manually, with the possibility of
automatic optimization of each parameter separately.

For systems with a large number of nonequivalent spins,
manual processing of spectra is often impractical. Even the
simple task of determining the alignment signals requires an
accurate estimation of spin-spin coupling constants in organic
molecules, which cannot be achieved without a comprehensive
analysis of the complex NMR spectrum. Typically, a set of peak
positions and intensities in a reference spectrum serves as an
identifier for the compound. However, these values can vary
depending on external factors such as pH, temperature, and
the strength of the magnetic field [22]. It is not possible to
simply collect a set of parameters in the laboratory and further
use them as a database for any cases. Thus, creating a tool that
enables the calculation of system parameters without manual
processing becomes crucial for more efficient spectrum
analysis.

The analysis of chemical shifts and J-coupling constants is
a valuable tool that enables the accurate determination of the
parameters of the spin system. NMR spectral analysis involves
solving a non-linear inverse problem, which is to determine
the parameters (resonant frequencies and interaction
constants) of a spin system that best matches experimental
spectra. However, it is not always possible to guarantee the
uniqueness of this solution, which makes it challenging to
find the correct parameters. In particular, the challenge of
identifying metabolites in human blood presents a significant
difficulty, owing to their wide range of variability.

To address this challenge, optimization algorithms have
been developed. These algorithms utilize synthetic spectrum
generation and annealing simulations to analyze the shape of
NMR spectral lines. In addition, specialized software packages
such as GISSMO [18] assist in optimizing the spin system
models on the algorithmic level. To advance methodological
development, mechanical filtration can be effectively applied
to metabolomics research. For further exploration, consider
the works [19,23].

Materials and methods
Spectral form analysis

This work was conducted using equipment from the MIPT
Shared Facilities Center. NMR spectra were acquired using
a Varian Inova 500 NMR-spectrometer with a 'H Larmor
frequency of 500 MHz. All experiments were conducted in
liquid solutions, and the spin Hamiltonian of the molecule in
this case can be represented as [24-27]:

H=H,+H, (1)

where the first term represents the Zeeman interaction
with the local magnetic field, while the second term represents
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the spin-spin J-coupling interaction:

Hz = vka’,
; K (2)

H, =%2Jk,(sik>si’) #5150 4+ SO 3)
k1

Here, v, is the k-th spin precession frequency, and J, are
J-coupling constants, which determine an interaction between
the k-th and [-th spins. The precession frequency of the
nuclear spin is determined as v, = yB (1 - o), where y is the
gyromagnetic ratio, B, is the external magnetic field, and ¢, is
the so-called shielding constant. Both resonant frequencies
v,and coupling constants J, are the main characteristics of
any molecule in NMR measurements and allow us to identify
a specific molecule in a sample. One can consider the case of
“weak” J-coupling between k-th and [-th nuclear spins: J,
.. Iv,- v|, when the corresponding part of the Hamiltonian

can be reduced to the secular part: HD ka,,S_f“Si”. Then

the required calculations are simplified. However, for the
case when J, is comparable to or greater than the chemical
shift values difference |v, - v,|, which is also called “strong”
coupling, it is necessary to consider the full contribution to
the spin-spin interaction Hamiltonian without neglecting the
non-secular part. Since “strong” coupling can be observed
for some metabolites, we solved the optimization problem in
a general way using a full form of Hamiltonian 3. Thus, the
proposed algorithm does not rely on perturbation theory and
considers “strong” spin-spin coupling (more general case),
which makes computational methods more stable and allows
us to successfully find parameters for, for example, AB systems.

Further, the corresponding matrix of the complete
Hamiltonian (1) will be written in the basis of eigenstates of the
Hamiltonian (2), that is, in the so-called computational basis.
The eigenvalues of this matrix give us the energy levels of
the nuclear spin system and, accordingly, the NMR spectrum,
which depends on both chemical shifts and coupling constants.
A comparison of the experimentally measured and calculated
spectra gives us the opportunity to identify the corresponding
molecule in the sample. In the following, the Hamiltonian
matrix will be called the spin matrix.

All the necessary parameters of the spin matrices of
molecules can be determined in experiments with pure
samples, but in the studied samples containing both different
concentrations of the molecules of interest and mixtures of
molecules, these parameters may differ. Thus, we need to
propose an efficient algorithm that modifies the parameters of
the known spin matrix of a molecule in order to identify it from
the observed NMR spectrum in the sample.

When creating the algorithm, it is necessary to take into
account that the molecules interact with the environment,
which leads to a broadening of the ideal lines of the observed
spectra. In liquids, this broadening can be well described by
the shape of Lorentz lines [28,29], which corresponds to the
exponential relaxation law. In our model, we will use the law
of exponential relaxation, which determines for each central
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line of the spectrum the corresponding width and shape of the
line. We can represent the transformation of the observed NMR
signal into the corresponding spectrum using the following
relations:

w V=Y,

. F
M(l)oce—(w—lva)lg(t)_) - +i
w+(v—v,)

(4)

w? +(v—v0)'

where M(t) is the experimentally observed signal, w is the peak
width (relaxation rate), and v, v, — spin resonant frequency
with and without shielding, 6(t) is the Heaviside function, F
is the Fourier transform operation,, which allows for shifting
from the time-domain signal (FID) to the frequency-domain
(spectrum). Therefore, the Lorentz peak model is used to
generate the spectrum, and we, together with the parameters
of the spin Hamiltonian, also train the relaxation coefficients.

For the universality of the model, we will train chemical
shifts & rather than resonant frequencies v, which are field
dependent:

§ =m0, 5)

Vo

where v, is the resonant frequency for tetramethylsilane.

When acquiring NMR spectra, a large number of scans are
usually accumulated and averaged. To speed up the registration
of spectra, the time between scans is usually set to about 3-6 s.
For some nuclei of a molecule, this time may be insufficient for
complete longitudinal relaxation, which may lead to a decrease
in the intensity of the signal of this nucleus in the averaged
NMR spectrum. To account for this factor, we introduced the
parameter r affecting the intensity of peaks.

Thus, it is easy to see that in order to solve the problem,
we need to find the following optimal parameters and values:
chemical shifts, the matrix of J-coupling constants, relaxation
rates that determine the width of the lines, as well as parameters
for correcting the intensity of the lines.

Model architecture

The optimization algorithm is organized as follows: it
receives a spectrum, which is represented by the y-axis
coordinates of a graph, as input. The goal is to find the optimal
model parameters in order to generate a synthesized graph that
most closely resembles the original spectrum being processed.
For these reasons, it is convenient to represent the frequencies
of the spectrum, relaxation rates, and correction parameters as

the corresponding vectors J,w and r . The model will predict

a set of system parameters J,w,” and a matrix of coupling
constants J using the experimental spectrum as input data.

In terms of meaning, it can be divided into two modules:
internal and external. At the internal level, the model will
build a synthetic spectrum from the current values of the
system parameters. In turn, at the outer level, the model
performs gradient optimization of the system parameters by
comparing the experimental data (input) with the synthetic
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spectrum obtained from the inner level. In our work, we will
apply the optimization algorithm only to data from 'H spectra.
But algorithm principles can be easily applied to study isotope
spectra with other resonant frequencies, for example, “F or 3C.

Tobuild synthetic spectra for given parameters, we calculate
the Hamiltonian of the system, determine its eigenvalues,
select possible transitions using selection rules, and construct
overall spectra by superimposing Lorentzian broadening on
corresponding frequencies.

Optimization challenges

The model is implemented using the PyTorch machine
learning framework for the Python programming language.
This design ensures that the entire model is fully differentiable,
allowing end-to-end optimization via gradient descent. The
integration of physics-based computations (e.g., Hamiltonian
construction and eigendecomposition) with conventional
deep learning techniques facilitates the accurate simulation
of complex spectral patterns, while also enabling parameter
optimization based on experimental data.

To formulate an optimization problem for our model, we
chose a loss function in the form

Loss = 10g(2 - COS(ySfm ’yEXﬂ ))’ COS(ysim ’yé’xp ) - %
sim exp

(6)

which is often used to process the Fourier spectra of various
signals. Here, y,; , y,,, — graphs of the corresponding synthetic
(generated) and experimental (ground truth) spectra. This
loss function was chosen for optimization because of the
following reasons. First, in NMR spectroscopy, spectra are
often processed in the frequency domain (Fourier space),
where the norm of the vector corresponds to the intensity of
the radiation. Cosine similarity measures the angle between
spectral vectors in a multidimensional space, which physically
corresponds to the degree of spectral similarity, regardless
of the absolute amplitude, which depends on the strong
magnetic field magnitude used for measurement. Second, the
logarithmic transformation serves to numerically stabilize and
prevent getting stuck in deep local minima (as discussed in the
context of Figure 1). Finally, in the loss function (6) shift by 2 is
due to the numerical stability of calculations. Generally, we do
not know of a generally accepted loss function for solving such
problems. Of course, it is possible to use other loss functions,
for example, Mean Squared Error (MSE), Mean Absolute Error
(MAE), or something else, but this requires a separate study and
is already of special interest for research in the field of neural

Initial Signal Processed Signal
,‘

\ ' J&LJ\L

Figure 1: In the left picture optimization algorithm becomes trapped in a local
minimum due to the merging of the right peak of the blue doublet with the left peak

of the red doublet. In the right picture, we use line broadening to avoid being trapped
in local minima.
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networks. General principles of hyperparameter selection for
gradient optimization can be found in machine learning works
(31-33].

To evaluate the quality of the chosen parameters, we will
utilize IoU (Intersection-over-Union) as a metric because of its
favorable interpretability. It can be perceived as the ratio of the
intersection area to the area of the union of the experimental
graph and the graph drawn by our model. In the context of the
identification of metabolites, this corresponds to the criterion:
“what proportion of the informative spectral region coincides
between the two spectra”. Also, this metric has invariant
properties to baseline shifts and uneven amplitude changes.
Note that experimental spectra are subject to measurement
errors, which lead to underestimated results when using this
metric.

The optimization problem arises due to narrow peaks, when
incorrectly selected initial parameters can lead to a significant
mismatch between experimental and generated peaks. For
example, if the right peak of one doublet merges with the
left peak of another, as shown in Figure 1, the optimization
algorithm may fall into the trap of a local minimum. To solve
this problem, we broadened the peaks of the experimental
spectrum using convolution with a Lorentzian kernel.

Although the suggested gradient descent method does not
offer a ready-made universal methodology, it can be used to
optimize the parameters of spin systems instead of manually
selecting parameters. Initial conditions of estimated values
(chemical shifts, spin-spin interaction constants) are selected
manually or from known sources [18](for example, GISSMO
[18]). In the future, the parameters are optimized using the
gradient descent method using a given loss function. After
reaching the minimum of the loss function, a visual comparison
of the model spectrum is performed, and the IoU is calculated
to evaluate the optimization quality.

Results and discussion

To illustrate the effectiveness of the model, we used the
L-proline molecule as an example. The structure and 'H NMR
spectrum of the L-proline molecule are shown in Figure 2. 'H
NMR spectrum of L-proline contains signals from seven non-
equivalent 'H nuclei. Most nuclei couple with several other
nuclei at once, making the spectrum quite complex.

To a first approximation, the J-coupling constants do
not depend on the external magnetic field, but under certain
conditions, they may depend on pH and temperature. Most

> > >

of the system parameters (J,w,r ) can vary depending on

external factors such as pH, temperature, the strength, or
inhomogeneity of the magnetic field [23]. At the same time, we
will assume that the J-coupling parameters should not change
significantly.

We will use the spin matrix provided by the ChenomX library
for proline to find out if the parameters of our spin system
can be improved. To do this, we will keep a fixed spin-spin
coupling matrix J and try to optimize the remaining parameters
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Figure 2: The structure of L-proline, experimental '"H NMR spectrum acquired at

500 MHz (blue) and calculated for optimized spin-system parameters [2] TH NMR
spectrum of L-proline (red). Here, the averaged matrix J was used.

by changing only the values of chemical shift § and peak width
w. Similarly, let’s look at optimization with additional fixed
parameters of the effective peak intensity coefficient r and a
system in which we optimize all parameters. We will evaluate
the quality using the indicator we entered.

To assess the validity of such an assumption, five different
L-proline spectra were analyzed:

1. Spectrum acquired at 500 MHz on our spectrometer.
The sample was dissolved in D,0, and a single-pulse
pulse sequence was applied;

2. Spectrum acquired at 500 MHz on our spectrometer.
The sample was dissolved in phosphate buffer solution
with pH 7.4, and a CPMG pulse sequence was applied.

3. Spectrum acquired at 500 MHz obtained from the
GISSMO open library.

4. Spectrum acquired at 600 MHz obtained from the
GISSMO open library.

5. Spectrum acquired at 600 MHz obtained from the HMDB
open library.

Due to the complexity of the task and the presence of noise
in the real spectra, the models converge to slightly different
spin matrices. Therefore, to get an approximate matrix, we use
matrix averaging over all models. The average matrix is shown
in Figure 3.

The IoU metrics obtained for the average ] matrix are
shown in Table 1, where the second column is responsible for
the metrics with our average spin matrix. For a more precise
verification of the dependence of the matrix J on the external
parameters of the experiment, it is necessary to conduct
a separate study; however, the data presented in the table
indicate that this assumption is valid for the studied spectra.

Using our model and average matrix J, we have successfully
optimized spin-system parameters for L-proline (Table 2 and
Figure 2). To estimate the computational time required for
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Figure 3: The averaged matrix J obtained for five different L-proline NMR spectra.

Table 1: Calculated IoU for the full optimized spectrum and fixed averaged J matrix
of the spin system for five different experimental spectra of L-proline.

Full optimization

1 0.909 0.901
2 0.914 0.898
3 0.925 0.915
4 0.879 0.874
5 0.877 0.876

Table 2: Complete set of parameters for L-proline spin system with averaged matrix J.

RN R RN NN N

Chemical shifts (6, ppm)  1.981 2.011 2.059 2.339 3.328 3.411 4.121

Line widths (w, Hz) 1.801 2.191 2154 1.906 1.682 1.600 1.757
Intensity °°'[re)°t'°” factors 648 1.000 0931 0977 0933 0932 0724
Proton number Coupling constants

1 12.831 7.651 7.086 7.305 7.480 0.777

2 6.706 6.830 7.105 6.589 0.584

3 12.962 0.482 0.905 6.510

4 0.281 0.701 8.830

5 11.586  0.071

6 0.382

the proposed method, optimization runs were performed on
a laptop equipped with an NVIDIA GeForce GTX 1650 (mobile)
graphics processing unit (GPU) and an Intel Core i5-10300H
central processing unit (CPU) with 4 cores and 8 threads, and
a base frequency of 2.5 GHz. The estimated computational
time is about 10 minutes. The Adam, standard optimization
algorithm, was used with a learning rate parameter configured
at approximately 10-2. Furthermore, a ReduceLROnPlateau
learning rate scheduler was implemented, which was
parameterized with a factor of 0.9 to dynamically adjust the
learning rate during the training process. In specific cases,
the Lorentz expansion method was applied, typically utilizing
values within the range of 1 to 10, in order to improve the
robustness and stability of the optimization procedure. The
code and associated data used in this study are openly available
in the GitHub repository.

The article [30] presents the matrix J for the proline
molecule obtained by annealing. Table 1: Calculated IoU for the
full optimized spectrum and fixed averaged J matrix of the spin
system for five different experimental spectra of L-proline
algorhythm. In addition, another matrix J is available in the
ChenomX application. To compare the matrices J from the above
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matrix sources with the matrix obtained using our algorithm,

- -
an optimization of the parameters of the spin system ( §5,w ) of
proline was performed with a fixed matrix J obtained from each
source of proline and all values r = 1.

Table 3 represents the metrics for the studied spectra.
The first column is responsible for the metric of the model
when optimizing all parameters. In other columns, ‘fix J and
r’ corresponds to the optimization when we take the initial
approximation matrix from [30] and ChenomX as the matrix
J. In turn, ‘fix r’ represents optimization without using cor-
rection factors’r.

For clarity, we will also attach the graphs we have obtained.
The graphs in Figure 4 illustrate the experimental spectrum,
the spectrum calculated based on the spin system using
ChenomX (designated “fix J r”’), and the spectrum obtained
from a fully optimized Table 3: Comparison of IoU for different
spectra of proline model that includes interaction constants
and correction factors (designated “no fix”). In Figure 5,
it can be seen that the use of relaxation rates significantly
improves the accuracy of the spectrum reconstruction. Figure 4
demonstrates how the model effectively handles complex peak
features.

Based on the metrics, it can be seen that our model finds
the parameters of the spin system more efficiently than the
search using the annealing algorithm.

To illustrate how the algorithm works, we tested its
performance on molecules of the most common amino acids

Table 3: Comparison of loU for different spectra of proline.

Full Fi
Number of sample ) u ) ix J (130]) Fix J (ChenomX) andr | Fixr
optimization and r
1

0.909 0.892 0.867 0.886
2 0.914 0.857 0.849 0.869
3 0.925 0.878 0.862 0.871
4 0.879 0.811 0.800 0.831
5 0.877 0.825 0.826 0.863

— experimental
—no_fix
—fix_J_r

ppm

Figure 4: Part of the L-Proline NMR spectrum: experimental (blue), fully simulated

using our model (red), and simulated with a fixed J matrix from ChenomX and
values r = 1 (violet).

—experimental
=no. fix
fix.r

| TS

4185 4.1 4,08
ppm

Figure 5: Part of the L-Proline NMR spectrum: experimental (blue), fully simulated

using our model (red), and simulated with fixed values r = 1 (orange).
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found in NMR spectra of biological fluids. For this purpose,
we uploaded experimental 'H NMR spectra and spin system
matrices for these spectra from the GISSMO library. Then we
calculated the IoU metric on the experimental spectra for fully
optimized systems and on spin system matrices downloaded
from GISSMO. The results of the comparison are shown in
Table 4.

As can be seen from the table, IoU metrics calculated using
our optimized spin-system parameters are more than metrics
calculated using J matrices from GISSMO for all studied spectra.
Due to the presence of noise, impurities, and asymmetry
caused by nonuniformity of the constant magnetic field in the
real spectra, all calculated metrics are less than 1. Nevertheless,
most of the metrics calculated for optimized parameters are
more than 0.9. The lowest IoU value was obtained for the
spectrum of glycine, which contains only one peak (see
GISSMO); therefore, solving the optimization problem here is
generally unnecessary. Thus, our proposed algorithm allows
us to effectively optimize the matrices of spin systems and
produce better results than manual optimization.

For a further justification of the loss function and metric
used, the estimated spectra obtained in the optimization modes
indicated above (i.e. ”Full optimization”, ”fix J”, ”Fix Jand r”,
YFix r” like it was used in Table 3) are also compared with the
ground-truth data in terms of classic loss functions MSE, MAE,
RMSD. The spectrum of the ProlineGISSMO-499.84MHz-
bmse000047 metabolite was used for comparison. Table 5
presents the comparison results. It can be seen from the results
obtained that optimizing the parameters of the spin system
in terms of the selected loss function 6 also improves quality
in terms of classical loss functions (which, with precision

Table 4: Comparison loU metric of other metabolites with our solution and GISSMO
solution.

Metabolite X Ffj" X GISSMO solution
optimization

L-Alanine 0.936 0.935
L-Arginine 0.955 0.908
L-Asparagine 0.947 0.789
L-Aspartate 0.958 0.949
L-Glutamate 0.943 0.891
L-Glutamine 0.930 0.919
L-Glycine 0.821 0.819
L-Histidine 0.870 0.513
L-Isoleucine 0.913 0.863
L-Leucine 0.854 0.768
L-Lysine 0.929 0.884
L-Methionine 0.935 0.748
L-Phenylalanine 0.935 0.822
L-Proline 0.955 0.844
L-Serine 0.922 0.880
L-Threonine 0.872 0.738
L-Tyrosine 0.933 0.858
L-Valine 0.949 0.855
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Table 5: Comparison of classic loss functions for different optimization modes.

Full optimization | Fix J ([30]) | Fix J([30]) and r

1.2-10° 4.4-10° 1.9-10° 1.6-10°
MAE 1.1-10°® 1.5-10° 25-10% 23-10°
RMSD 3.5-10° 6.6-10° 13.9-10° 12.5-10°

to the sign, can also be considered as quality metrics in this
context). The result obtained justifies the use of the selected
loss function.

Conclusion

The obtained data allow us to conclude that our method
gives results better than known open-source solutions, while
not requiring manual processing. IoU metrics calculated for spin
system parameters optimized for five different NMR spectra
of L-Proline demonstrate better results than for spin systems
with fixed J obtained from [30] and ChenomX. In addition, we
demonstrate better optimization of spin system parameters
for the spectra of the most common amino acids available in
the GISSMO [18] database. The obtained model and parameters
of the spin systems of metabolite molecules can be used to
automate the determination of metabolite concentrations in
biological samples and significantly accelerate and simplify the
analysis of samples in the field of NMR metabolomics.

Data availability

The code and associated data used in this study are openly
available in the GitHub repository.

Acknowledgments
We acknowledge our colleagues for fruitful discussion.
Author contributions

- Fattakhovn M.M.: Data Curation,
Methodology, Software, Validation,
Writing — Original Draft;

Investigation,
Visualization,

- Safin D.R.: Conceptualization, Formal Analysis,
Methodology, Project Administration, Writing -
Original Draft, Writing — Review & Editing;

+ Fedorov D.A.: Conceptualization, Data Curation,
Investigation, Visualization, Writing — Original Draft;

- Khramov E.S.:
Software;

Conceptualization, Methodology,

- Verevkin E.R.: Data Curation, Software, Writing -
Review & Editing;

+  Perepukhov A.M.: Conceptualization, Data Curation,
Investigation, Project Administration, Resources,
Supervision, Validation, Writing — Review & Editing;

+  Belousov Yu.M.: Conceptualization, Formal Analysis,
Project Administration, Supervision, Writing — Review

& Editing.
=]

Citation: Fattakhov MM, Safin DR, Fedorov DA, Khramov ES, Verevkin ER, Perepukhov AM, et al. Application of the Gradient Descent Method for Optimization of Spin
System Parameters of Metabolite Molecules by NMR Spectra. Int J Pharm Sci Dev Res. 2026;12(1):001-008.

Available from: https://dx.doi.org/10.17352/ijpsdr.000058



P PeertechzPublications

All authors have read and agreed to the published version

of the manuscript.

References

-
.

Nagana Gowda GA, Raftery D. NMR metabolomics methods for investigating
disease. Anal Chem. 2023;95(1):83-99. Available from: https://doi.
org/10.1021/acs.analchem.2c04606

He L, Jiang B, Peng Y, Zhang X, Liu M. NMR-based methods for metabolites
analysis. Anal Chem. 2025;97(10):5393-5406. Available from: https://doi.
org/10.1021/acs.analchem.4c06477

Zhang X, Xia B, Zheng H, Ning J, Zhu Y, Shao X. Identification of characteristic
metabolic panels for different stages of prostate cancer by TH NMR-based
metabolomics analysis. J Trans| Med. 2022;20(1):275. Available from:
https://doi.org/10.1186/s12967-022-03478-5

Aderemi AV, Ayeleso AO, Oyedapo 00, Mukwevho E. Metabolomics: a scoping
review of its role as a tool for disease biomarker discovery in selected
non-communicable diseases. Metabolites. 2021;11(7):418. Available from:
https://doi.org/10.3390/metabo11070418

Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz
JD. Host-parasite interactions revealed by Plasmodium falciparum
metabolomics. Cell Host Microbe. 2009;5(2):191-199. Available from:
https://doi.org/10.1016/j.chom.2009.01.004

Gu H, Chen H, Pan Z, Jackson AU, Talaty N, Xi B, et al. Monitoring diet effects
via biofluids and their implications for metabolomics studies. Anal Chem.
2007;79:89-97. Available from: https://doi.org/10.1021/ac060946c

Cobas C. NMR signal processing, prediction, and structure verification
with machine learning techniques. Magn Reson Chem. 2020;58:512-519.
Available from: https://doi.org/10.1002/mrc.4989

Johnson CH, Gonzalez FJ. Challenges and opportunities of metabolomics. J
Cell Physiol. 2012;227:2975-2981. Available from: https://doi.org/10.1002/
jcp.24002

Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, et
al. NMR spectroscopy for metabolomics research. Metabolites. 2019;9:123.
Available from: https://doi.org/10.3390/metabo9070123

. Wishart DS. Quantitative metabolomics using NMR. Trends Anal Chem.

2008;27:228-237. Available from: https://doi.org/10.1016/j.trac.2007.12.001

. Markley JL, Bruschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery

D, et al. The future of NMR-based metabolomics. Curr Opin Biotechnol.
2017;43:34-40. Available from: https://doi.org/10.1016/j.copbio.2016.08.001

. Kumar D, Gupta A, Mandhani A, Sankhwar SN. NMR spectroscopy of

filtered serum of prostate cancer: a new frontier in metabolomics. Prostate.
2016;76:1106—1119. Available from: https://doi.org/10.1002/pros.23198

.Feng C, Li H, Zhang C, Zhou Y, Zhang H, Zheng P, et al. Exploring the causal

role of plasma metabolites and metabolite ratios in prostate cancer: a two-
sample Mendelian randomization study. Front Mol Biosci. 2025;11:1406055.
Available from: https://doi.org/10.3389/fmolb.2024.1406055

. Yagin FH, Gormez Y, Al-Hashem F, Ahmad |, Ahmad F, Ardigo LP. Biomarker

discovery and development of prognostic prediction model using
metabolomic panel in breast cancer patients: a hybrid methodology
integrating machine learning and explainable artificial intelligence. Front
Mol Biosci. 2024;11:1426964. Available from: https://doi.org/10.3389/
fmolb.2024.1426964

. Panach-Navarrete J, Gonzalez-Marrachelli V, Morales-Tatay JM, Garcia-

Morata F, Sales-Maicas MA, Monledn-Salvado D, et al. Urine metabolic
analysis as a noninvasive method to diagnose prostate cancer. Urol Oncol.
2026;44(2):125.e1-125.e10. Available from: https://doi.org/10.1016/j.
urolonc.2025.10.015

2|

2

2

2

2

2

2

2

2

2

3

3

o

~

O

0.

iy

2.

3.

4.

o

6.

N

8.

O

0.

a

https://www.pharmascigroup.us/journals/international-journal-of-pharmaceutical-sciences-and-developmental-research 8

Martinez-Trevino SH, Uc-Cetina V, Fernandez-Herrera MA, Merino G.
Prediction of natural product classes using machine learning and 13C NMR
spectroscopic data. J Chem Inf Model. 2020;60:3376—3386. Available from:
https://doi.org/10.1021/acs.jcim.0c00293

Rohnisch HE, Eriksson J, Tran LV, Miillner E, Sandstrom C, Moazzami AA.
Improved automated quantification algorithm (AQuA) and its application
to NMR-based metabolomics of EDTA-containing plasma. Anal Chem.
2021;93:8729-8738. Available from: https://doi.org/10.1021/acs.
analchem.0c04233

. Dashti H, Westler WM, Tonelli M, Wedell JR, Markley JL, Eghbalnia HR. Spin

system modeling of nuclear magnetic resonance spectra for applications in
metabolomics and small molecule screening. Anal Chem. 2017;89:12201—
12208. Available from: https://doi.org/10.1021/acs.analchem.7b02884

. Tardivel PJC, Canlet C, Lefort G, Tremblay-Franco M, Debrauwer L, et

al. ASICS: an automatic method for identification and quantification of
metabolites in complex 1D TH NMR spectra. Metabolomics. 2017;13:109.
Available from: https://link.springer.com/article/10.1007/s11306-017-1244-5

Atieh Z, Suhre K, Bensmail H. MetFlexo: an automated simulation of realistic
TH-NMR spectra. Procedia Comput Sci. 2013;18:1382-1391. Available from:
https://doi.org/10.1016/j.procs.2013.05.305

. Bhinderwala F, Roth HE, Noel H, Feng D, Powers R. Chemical shift variations

in common metabolites. J Magn Reson. 2022;345:107335. Available from:
https://doi.org/10.1016/j.jmr.2022.107335

Bansal N, Kumar M, Gupta A. Richer than previously probed: an application of
TH NMR reveals one hundred metabolites using only fifty microliter serum.
Biophys Chem. 2024;305:107153. Available from: https://doi.org/10.1016/j.
bpc.2023.107153

Gupta A, Kumar D. Beyond the limit of assignment of metabolites using
minimal serum samples and TH NMR spectroscopy with cross-validation
by mass spectrometry. J Pharm Biomed Anal. 2018;151:356-364. Available
from: https://doi.org/10.1016/j.jpba.2018.01.015

Pople JA. The theory of chemical shifts in nuclear magnetic resonance.
I. Induced current densities. Proc R Soc Lond A. 1957;239:541-549.
Available from: https://royalsocietypublishing.org/rspa/article-
abstract/239/1219/541/9990/The-theory-of-chemical-shifts-in-nuclear-
magnetic?redirectedFrom=fulltext

McConnell HM. Theory of nuclear magnetic shielding in molecules. I. Long-
range dipolar shielding of protons. J Chem Phys. 1957,27:226-229. Available
from: https://ui.adsabs.harvard.edu/abs/1957JChPh..27..226M/abstract

Ramsey NF, Purcell EM. Interactions between nuclear spins in molecules.
Phys Rev. 1952;85:143-144. Available from: https://doi.org/10.1103/
PhysRev.85.143

Gutowsky HS, McCall DW. Nuclear magnetic resonance fine structure in
liquids. Phys Rev. 1953;82:748-749. Available from: https://journals.aps.org/
pr/abstract/10.1103/PhysRev.82.748

Abragam A. The principles of nuclear magnetism. Oxford: Clarendon Press;
1961. Available from: https://www.scribd.com/doc/75401377/Abragam-The-
Principles-of-Nuclear-Magnetism

. Slichter CP. Principles of magnetic resonance. Springer Series in Solid-State

Sciences. 1996. Available from: https://books.google.co.in/books/about/
Principles_of_Magnetic_Resonance.html?id=zgnrRkalhFoC&redir_esc=y

Cheshkov DA, Sinitsyn DO, Sheberstov KF, Chertkov VA. Total lineshape
analysis of high-resolution NMR spectra powered by simulated annealing.
J Magn Reson. 2016;272:10-19. Available from: https://doi.org/10.1016/j.
jmr.2016.08.012

. Murphy KP. Probabilistic machine learning: an introduction. Cambridge (MA):

MIT Press; 2022. Available from: https://mitpress.mit.edu/9780262046824/
probabilistic-machine-learning/

007

Citation: Fattakhov MM, Safin DR, Fedorov DA, Khramov ES, Verevkin ER, Perepukhov AM, et al. Application of the Gradient Descent Method for Optimization of Spin
System Parameters of Metabolite Molecules by NMR Spectra. Int J Pharm Sci Dev Res. 2026;12(1):001-008.
Available from: https://dx.doi.org/10.17352/ijpsdr.000058



@ PeertechzPublications https://www.pharmascigroup.us/journals/international-journal-of-pharmaceutical-sciences-and-developmental-research 8

32. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge (MA): MIT 33. Deisenroth MP, Faisal AA, Ong CS. Mathematics for machine learning.
Press; 2016. Available from: https:/mitpress.mit.edu/9780262035613/deep- Cambridge: Cambridge University Press; 2020. Available from: https://mml-
learning/ book.github.io/book/mmil-book.pdf

Discover a bigger Impact and Visibility of your article publication with

Peertechz Publications

Highlights
< Signatory publisher of ORCID
<  Signatory Publisher of DORA (San Francisco Declaration on Research Assessment)

< Articles archived in worlds’ renowned service providers such as Portico, CNKI, AGRIS,
TDNet, Base (Bielefeld University Library), CrossRef, Scilit, J-Gate etc.

< Journals indexed in ICMJE, SHERPA/ROMEQ, Google Scholar etc.

<  OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
< Dedicated Editorial Board for every journal

< Accurate and rapid peer-review process

< Increased citations of published articles through promotions

< Reduced timeline for article publication

Submit your articles and experience a new surge in publication services
https:/www.peertechzpublications.org/submission

Peertechz journals wishes everlasting success in your every endeavours.

008

Citation: Fattakhov MM, Safin DR, Fedorov DA, Khramov ES, Verevkin ER, Perepukhov AM, et al. Application of the Gradient Descent Method for Optimization of Spin
System Parameters of Metabolite Molecules by NMR Spectra. Int J Pharm Sci Dev Res. 2026;12(1):001-008.
Available from: https://dx.doi.org/10.17352/ijpsdr.000058



