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Abstract

Nuclear Magnetic Resonance Spectroscopy is an effective physical method for metabolite fi ngerprinting, which involves the simultaneous and extensive analysis of 
a wide variety of compounds. The main disadvantage of the method, which hinders the progress of NMR metabolomics, is the need for manual processing of complex 
NMR spectra of biological samples. To automate the identifi cation of metabolites in spectra, it is necessary to determine the parameters of the spin system of the 
main metabolites found in the samples under study. To address this issue, we propose an optimization algorithm that autonomously optimizes all relevant spin system 
parameters. The algorithm’s successful operation has been demonstrated on molecules of the most common amino acids found in NMR spectra of biological samples. 
The developed algorithm produced a proline spin-spin coupling matrix that, when evaluated by the Intersection-over-Union metric, showed better consistency with fi ve 
experimental NMR spectra than literature matrices.
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as many metabolites as possible and assessing changes in 
metabolite levels in response to external factors. In contrast, 
metabolic profi ling focuses on a narrower range of metabolites, 
often tracking specifi c pathways. NMR is particularly effective 
for metabolite fi ngerprinting, which involves the simultaneous 
and extensive analysis of a wide variety of compounds [16].

Many programs have been developed to analyze the 
composition of metabolites using NMR spectra of biological 
fl uids under study [17,18,20]. Nevertheless, the main tool 
currently used is the ChenomX program, in which the search for 
signals of metabolites in each spectrum is carried out manually 
ChenomX publications. Manual search for metabolites in the 
spectrum signifi cantly slows down the analysis process and 
is a source of errors in the data. Automating the search for 
metabolites in the spectra is diffi cult because NMR spectra 
often have a complex structure. Moreover, the specifi c type 
of the metabolite spectrum may vary depending on the 
composition of the entire sample [21]. The exact structure of 
the NMR spectrum is determined by the matrix of the spin 

Introduction

Metabolomics is an omics technology that has broad 
applications across various scientifi c fi elds and systems biology. 
The study of metabolic profi les involves the measurement and 
analysis of metabolites, including amino acids, carbohydrates, 
and lipids derived from biofl uids, plants, and cellular extracts. 
It has been utilized to diagnose illnesses [1-3], explore disease 
pathology [4], examine host-parasite interactions [5] and 
monitor dietary impacts [6]. The signifi cance of metabolomics 
in drug discovery and disease diagnosis lies in its ability to 
refl ect direct changes in cellular activity through alterations in 
the metabolome.

The use of NMR (Nuclear Magnetic Resonance) in 
metabolomics and metabolic profi ling is expanding rapidly, 
alongside advances in methods for measuring, analyzing, 
and interpreting complex datasets [7-15]. Metabolomics, also 
referred to as metabonomics, encompasses a comprehensive set 
of measurements on biological samples aimed at quantifying 



002

https://www.pharmascigroup.us/journals/international-journal-of-pharmaceutical-sciences-and-developmental-research

Citation: Fattakhov MM, Safin DR, Fedorov DA, Khramov ES, Verevkin ER, Perepukhov AM, et al. Application of the Gradient Descent Method for Optimization of Spin 
System Parameters of Metabolite Molecules by NMR Spectra. Int J Pharm Sci Dev Res. 2026;12(1):001-008. 
Available from: https://dx.doi.org/10.17352/ijpsdr.000058

the spin-spin J-coupling interaction:
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Here, k is the k-th spin precession frequency, and Jkl are 
J-coupling constants, which determine an interaction between 
the k-th and l-th spins. The precession frequency of the 
nuclear spin is determined as k = B0(1 − k), where γ is the 
gyromagnetic ratio, B0 is the external magnetic fi eld, and k is 
the so-called shielding constant. Both resonant frequencies 
k and coupling constants Jkl are the main characteristics of 
any molecule in NMR measurements and allow us to identify 
a specifi c molecule in a sample. One can consider the case of 
“weak” J-coupling between k-th and l-th nuclear spins: Jkl 

<< |k − l|, when the corresponding part of the Hamiltonian 

can be reduced to the secular part: ( , ) ( ) ( )
,

k l k l
J k l z zH J S S . Then 

the required calculations are simplifi ed. However, for the 
case when Jkl is comparable to or greater than the chemical 
shift values difference |k − l|, which is also called “strong” 
coupling, it is necessary to consider the full contribution to 
the spin-spin interaction Hamiltonian without neglecting the 
non-secular part. Since “strong” coupling can be observed 
for some metabolites, we solved the optimization problem in 
a general way using a full form of Hamiltonian 3. Thus, the 
proposed algorithm does not rely on perturbation theory and 
considers “strong” spin-spin coupling (more general case), 
which makes computational methods more stable and allows 
us to successfully fi nd parameters for, for example, AB systems.

Further, the corresponding matrix of the complete 
Hamiltonian (1) will be written in the basis of eigenstates of the 
Hamiltonian (2), that is, in the so-called computational basis. 
The eigenvalues of this matrix give us the energy levels of 
the nuclear spin system and, accordingly, the NMR spectrum, 
which depends on both chemical shifts and coupling constants. 
A comparison of the experimentally measured and calculated 
spectra gives us the opportunity to identify the corresponding 
molecule in the sample. In the following, the Hamiltonian 
matrix will be called the spin matrix.

All the necessary parameters of the spin matrices of 
molecules can be determined in experiments with pure 
samples, but in the studied samples containing both different 
concentrations of the molecules of interest and mixtures of 
molecules, these parameters may differ. Thus, we need to 
propose an effi cient algorithm that modifi es the parameters of 
the known spin matrix of a molecule in order to identify it from 
the observed NMR spectrum in the sample.

When creating the algorithm, it is necessary to take into 
account that the molecules interact with the environment, 
which leads to a broadening of the ideal lines of the observed 
spectra. In liquids, this broadening can be well described by 
the shape of Lorentz lines [28,29], which corresponds to the 
exponential relaxation law. In our model, we will use the law 
of exponential relaxation, which determines for each central 

system, which contains the values of the chemical shift and 
the spin-spin interaction constants between all 1H nuclei. The 
authors [18] have developed the GISSMO package and a library 
of matrices of spin systems of metabolites. However, the 
calculation of the parameters of spin systems in the GISSMO 
package is carried out mainly manually, with the possibility of 
automatic optimization of each parameter separately.

For systems with a large number of nonequivalent spins, 
manual processing of spectra is often impractical. Even the 
simple task of determining the alignment signals requires an 
accurate estimation of spin-spin coupling constants in organic 
molecules, which cannot be achieved without a comprehensive 
analysis of the complex NMR spectrum. Typically, a set of peak 
positions and intensities in a reference spectrum serves as an 
identifi er for the compound. However, these values can vary 
depending on external factors such as pH, temperature, and 
the strength of the magnetic fi eld [22]. It is not possible to 
simply collect a set of parameters in the laboratory and further 
use them as a database for any cases. Thus, creating a tool that 
enables the calculation of system parameters without manual 
processing becomes crucial for more effi cient spectrum 
analysis.

The analysis of chemical shifts and J-coupling constants is 
a valuable tool that enables the accurate determination of the 
parameters of the spin system. NMR spectral analysis involves 
solving a non-linear inverse problem, which is to determine 
the parameters (resonant frequencies and interaction 
constants) of a spin system that best matches experimental 
spectra. However, it is not always possible to guarantee the 
uniqueness of this solution, which makes it challenging to 
fi nd the correct parameters. In particular, the challenge of 
identifying metabolites in human blood presents a signifi cant 
diffi culty, owing to their wide range of variability.

To address this challenge, optimization algorithms have 
been developed. These algorithms utilize synthetic spectrum 
generation and annealing simulations to analyze the shape of 
NMR spectral lines. In addition, specialized software packages 
such as GISSMO [18] assist in optimizing the spin system 
models on the algorithmic level. To advance methodological 
development, mechanical fi ltration can be effectively applied 
to metabolomics research. For further exploration, consider 
the works [19,23].

Materials and methods

Spectral form analysis

This work was conducted using equipment from the MIPT 
Shared Facilities Center. NMR spectra were acquired using 
a Varian Inova 500 NMR-spectrometer with a 1H Larmor 
frequency of 500 MHz. All experiments were conducted in 
liquid solutions, and the spin Hamiltonian of the molecule in 
this case can be represented as [24-27]:

H = HZ + HJ,                (1)

where the fi rst term represents the Zeeman interaction 
with the local magnetic fi eld, while the second term represents 



003

https://www.pharmascigroup.us/journals/international-journal-of-pharmaceutical-sciences-and-developmental-research

Citation: Fattakhov MM, Safin DR, Fedorov DA, Khramov ES, Verevkin ER, Perepukhov AM, et al. Application of the Gradient Descent Method for Optimization of Spin 
System Parameters of Metabolite Molecules by NMR Spectra. Int J Pharm Sci Dev Res. 2026;12(1):001-008. 
Available from: https://dx.doi.org/10.17352/ijpsdr.000058

line of the spectrum the corresponding width and shape of the 
line. We can represent the transformation of the observed NMR 
signal into the corresponding spectrum using the following 
relations:
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where M(t) is the experimentally observed signal, w is the peak 
width (relaxation rate), and , 0 – spin resonant frequency 
with and without shielding, (t) is the Heaviside function, F 
is the Fourier transform operation,, which allows for shifting 
from the time-domain signal (FID) to the frequency-domain 
(spectrum). Therefore, the Lorentz peak model is used to 
generate the spectrum, and we, together with the parameters 
of the spin Hamiltonian, also train the relaxation coeffi cients.

For the universality of the model, we will train chemical 
shifts  rather than resonant frequencies , which are fi eld 
dependent:

6TMS

0

*10v v
v

 
 ,                  (5)

where TMS is the resonant frequency for tetramethylsilane.

When acquiring NMR spectra, a large number of scans are 
usually accumulated and averaged. To speed up the registration 
of spectra, the time between scans is usually set to about 3-6 s. 
For some nuclei of a molecule, this time may be insuffi cient for 
complete longitudinal relaxation, which may lead to a decrease 
in the intensity of the signal of this nucleus in the averaged 
NMR spectrum. To account for this factor, we introduced the 
parameter r affecting the intensity of peaks.

Thus, it is easy to see that in order to solve the problem, 
we need to fi nd the following optimal parameters and values: 
chemical shifts, the matrix of J-coupling constants, relaxation 
rates that determine the width of the lines, as well as parameters 
for correcting the intensity of the lines.

Model architecture

The optimization algorithm is organized as follows: it 
receives a spectrum, which is represented by the y-axis 
coordinates of a graph, as input. The goal is to fi nd the optimal 
model parameters in order to generate a synthesized graph that 
most closely resembles the original spectrum being processed. 
For these reasons, it is convenient to represent the frequencies 
of the spectrum, relaxation rates, and correction parameters as 

the corresponding vectors ,w
 

 and r


. The model will predict 

a set of system parameters , ,w r
  

and a matrix of coupling 
constants J using the experimental spectrum as input data.

In terms of meaning, it can be divided into two modules: 
internal and external. At the internal level, the model will 
build a synthetic spectrum from the current values of the 
system parameters. In turn, at the outer level, the model 
performs gradient optimization of the system parameters by 
comparing the experimental data (input) with the synthetic 

spectrum obtained from the inner level. In our work, we will 
apply the optimization algorithm only to data from 1H spectra. 
But algorithm principles can be easily applied to study isotope 
spectra with other resonant frequencies, for example, 19F or 13C.

To build synthetic spectra for given parameters, we calculate 
the Hamiltonian of the system, determine its eigenvalues, 
select possible transitions using selection rules, and construct 
overall spectra by superimposing Lorentzian broadening on 
corresponding frequencies.

Optimization challenges

The model is implemented using the PyTorch machine 
learning framework for the Python programming language. 
This design ensures that the entire model is fully differentiable, 
allowing end-to-end optimization via gradient descent. The 
integration of physics-based computations (e.g., Hamiltonian 
construction and eigendecomposition) with conventional 
deep learning techniques facilitates the accurate simulation 
of complex spectral patterns, while also enabling parameter 
optimization based on experimental data.

To formulate an optimization problem for our model, we 
chose a loss function in the form

       
    

  

Loss log 2 cos , ,  cos ,
|| || || || '

sim exp
sim exp sim exp

sim exp

y y
y y y y

y y


  


  

                 (6)

which is often used to process the Fourier spectra of various 
signals. Here, ysim, yexp — graphs of the corresponding synthetic 
(generated) and experimental (ground truth) spectra. This 
loss function was chosen for optimization because of the 
following reasons. First, in NMR spectroscopy, spectra are 
often processed in the frequency domain (Fourier space), 
where the norm of the vector corresponds to the intensity of 
the radiation. Cosine similarity measures the angle between 
spectral vectors in a multidimensional space, which physically 
corresponds to the degree of spectral similarity, regardless 
of the absolute amplitude, which depends on the strong 
magnetic fi eld magnitude used for measurement. Second, the 
logarithmic transformation serves to numerically stabilize and 
prevent getting stuck in deep local minima (as discussed in the 
context of Figure 1). Finally, in the loss function (6) shift by 2 is 
due to the numerical stability of calculations. Generally, we do 
not know of a generally accepted loss function for solving such 
problems. Of course, it is possible to use other loss functions, 
for example, Mean Squared Error (MSE), Mean Absolute Error 
(MAE), or something else, but this requires a separate study and 
is already of special interest for research in the fi eld of neural 

Figure 1: In the left picture optimization algorithm becomes trapped in a local 
minimum due to the merging of the right peak of the blue doublet with the left peak 
of the red doublet. In the right picture, we use line broadening to avoid being trapped 
in local minima.
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networks. General principles of hyperparameter selection for 
gradient optimization can be found in machine learning works 
[31-33].

To evaluate the quality of the chosen parameters, we will 
utilize IoU (Intersection-over-Union) as a metric because of its 
favorable interpretability. It can be perceived as the ratio of the 
intersection area to the area of the union of the experimental 
graph and the graph drawn by our model. In the context of the 
identifi cation of metabolites, this corresponds to the criterion: 
“what proportion of the informative spectral region coincides 
between the two spectra”. Also, this metric has invariant 
properties to baseline shifts and uneven amplitude changes. 
Note that experimental spectra are subject to measurement 
errors, which lead to underestimated results when using this 
metric.

The optimization problem arises due to narrow peaks, when 
incorrectly selected initial parameters can lead to a signifi cant 
mismatch between experimental and generated peaks. For 
example, if the right peak of one doublet merges with the 
left peak of another, as shown in Figure 1, the optimization 
algorithm may fall into the trap of a local minimum. To solve 
this problem, we broadened the peaks of the experimental 
spectrum using convolution with a Lorentzian kernel.

Although the suggested gradient descent method does not 
offer a ready-made universal methodology, it can be used to 
optimize the parameters of spin systems instead of manually 
selecting parameters. Initial conditions of estimated values 
(chemical shifts, spin-spin interaction constants) are selected 
manually or from known sources [18](for example, GISSMO 
[18]). In the future, the parameters are optimized using the 
gradient descent method using a given loss function. After 
reaching the minimum of the loss function, a visual comparison 
of the model spectrum is performed, and the IoU is calculated 
to evaluate the optimization quality.

Results and discussion

To illustrate the effectiveness of the model, we used the 
L-proline molecule as an example. The structure and 1H NMR 
spectrum of the L-proline molecule are shown in Figure 2. 1H 
NMR spectrum of L-proline contains signals from seven non-
equivalent 1H nuclei. Most nuclei couple with several other 
nuclei at once, making the spectrum quite complex.

To a fi rst approximation, the J-coupling constants do 
not depend on the external magnetic fi eld, but under certain 
conditions, they may depend on pH and temperature. Most 

of the system parameters ( , ,w r
  

) can vary depending on 

external factors such as pH, temperature, the strength, or 
inhomogeneity of the magnetic fi eld [23]. At the same time, we 
will assume that the J-coupling parameters should not change 
signifi cantly.

We will use the spin matrix provided by the ChenomX library 
for proline to fi nd out if the parameters of our spin system 
can be improved. To do this, we will keep a fi xed spin-spin 
coupling matrix J and try to optimize the remaining parameters 

by changing only the values of chemical shift  and peak width 
w. Similarly, let’s look at optimization with additional fi xed 
parameters of the effective peak intensity coeffi cient r and a 
system in which we optimize all parameters. We will evaluate 
the quality using the indicator we entered.

To assess the validity of such an assumption, fi ve different 
L-proline spectra were analyzed:

1. Spectrum acquired at 500 MHz on our spectrometer. 
The sample was dissolved in D2O, and a single-pulse 
pulse sequence was applied;

2. Spectrum acquired at 500 MHz on our spectrometer. 
The sample was dissolved in phosphate buffer solution 
with pH 7.4, and a CPMG pulse sequence was applied.

3. Spectrum acquired at 500 MHz obtained from the 
GISSMO open library.

4. Spectrum acquired at 600 MHz obtained from the 
GISSMO open library.

5. Spectrum acquired at 600 MHz obtained from the HMDB 
open library.

Due to the complexity of the task and the presence of noise 
in the real spectra, the models converge to slightly different 
spin matrices. Therefore, to get an approximate matrix, we use 
matrix averaging over all models. The average matrix is shown 
in Figure 3.

The IoU metrics obtained for the average J matrix are 
shown in Table 1, where the second column is responsible for 
the metrics with our average spin matrix. For a more precise 
verifi cation of the dependence of the matrix J on the external 
parameters of the experiment, it is necessary to conduct 
a separate study; however, the data presented in the table 
indicate that this assumption is valid for the studied spectra. 

Using our model and average matrix J, we have successfully 
optimized spin-system parameters for L-proline (Table 2 and 
Figure 2). To estimate the computational time required for 

Figure 2: The structure of L-proline, experimental 1H NMR spectrum acquired at 
500 MHz (blue) and calculated for optimized spin-system parameters [2] 1H NMR 
spectrum of L-proline (red). Here, the averaged matrix J was used.
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the proposed method, optimization runs were performed on 
a laptop equipped with an NVIDIA GeForce GTX 1650 (mobile) 
graphics processing unit (GPU) and an Intel Core i5-10300H 
central processing unit (CPU) with 4 cores and 8 threads, and 
a base frequency of 2.5 GHz. The estimated computational 
time is about 10 minutes. The Adam, standard optimization 
algorithm, was used with a learning rate parameter confi gured 
at approximately 10−2. Furthermore, a ReduceLROnPlateau 
learning rate scheduler was implemented, which was 
parameterized with a factor of 0.9 to dynamically adjust the 
learning rate during the training process. In specifi c cases, 
the Lorentz expansion method was applied, typically utilizing 
values within the range of 1 to 10, in order to improve the 
robustness and stability of the optimization procedure. The 
code and associated data used in this study are openly available 
in the GitHub repository.

The article [30] presents the matrix J for the proline 
molecule obtained by annealing. Table 1: Calculated IoU for the 
full optimized spectrum and fi xed averaged J matrix of the spin 
system for fi ve different experimental spectra of L-proline 
algorhythm. In addition, another matrix J is available in the 
ChenomX application. To compare the matrices J from the above 

matrix sources with the matrix obtained using our algorithm, 

an optimization of the parameters of the spin system ( ,w
 

) of 
proline was performed with a fi xed matrix J obtained from each 
source of proline and all values r = 1.

Table 3 represents the metrics for the studied spectra. 
The fi rst column is responsible for the metric of the model 
when optimizing all parameters. In other columns, ‘fi x J and 
r’ corresponds to the optimization when we take the initial 
approximation matrix from [30] and ChenomX as the matrix 
J. In turn, ‘fi x r’ represents optimization without using cor-
rection factors⃗r.

For clarity, we will also attach the graphs we have obtained. 
The graphs in Figure 4 illustrate the experimental spectrum, 
the spectrum calculated based on the spin system using 
ChenomX (designated “fi x J r”), and the spectrum obtained 
from a fully optimized Table 3: Comparison of IoU for different 
spectra of proline model that includes interaction constants 
and correction factors (designated “no fi x”). In Figure 5, 
it can be seen that the use of relaxation rates signifi cantly 
improves the accuracy of the spectrum reconstruction. Figure 4 
demonstrates how the model effectively handles complex peak 
features.

Based on the metrics, it can be seen that our model fi nds 
the parameters of the spin system more effi ciently than the 
search using the annealing algorithm.

To illustrate how the algorithm works, we tested its 
performance on molecules of the most common amino acids 

Figure 3: The averaged matrix J obtained for fi ve different L-proline NMR spectra.

Table 1: Calculated IoU for the full optimized spectrum and fi xed averaged J matrix 
of the spin system for fi ve different experimental spectra of L-proline.

Full optimization Fix avg J

1 0.909 0.901

2 0.914 0.898

3 0.925 0.915

4 0.879 0.874

5 0.877 0.876

Table 2: Complete set of parameters for L-proline spin system with averaged matrix J.

Proton number 1 2 3 4 5 6 7

Chemical shifts (δ, ppm) 1.981 2.011 2.059 2.339 3.328 3.411 4.121

Line widths (w, Hz) 1.801 2.191 2.154 1.906 1.682 1.600 1.757

Intensity correction factors 
(r)

0.848 1.000 0.931 0.977 0.933 0.932 0.724

Proton number Coupling constants

1 12.831 7.651 7.086 7.305 7.480 0.777

2 6.706 6.830 7.105 6.589 0.584

3 12.962 0.482 0.905 6.510

4 0.281 0.701 8.830

5 11.586 0.071

6 0.382
Table 3: Comparison of IoU for different spectra of proline.

Number of sample
Full 

optimization
Fix J ([30]) 

and r
Fix J (ChenomX) and r Fix r

1 0.909 0.892 0.867 0.886

2 0.914 0.857 0.849 0.869

3 0.925 0.878 0.862 0.871

4 0.879 0.811 0.800 0.831

5 0.877 0.825 0.826 0.863

Figure 4: Part of the L-Proline NMR spectrum: experimental (blue), fully simulated 
using our model (red), and simulated with a fi xed J matrix from ChenomX and 
values r = 1 (violet).

Figure 5: Part of the L-Proline NMR spectrum: experimental (blue), fully simulated 
using our model (red), and simulated with fi xed values r = 1 (orange).
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found in NMR spectra of biological fl uids. For this purpose, 
we uploaded experimental 1H NMR spectra and spin system 
matrices for these spectra from the GISSMO library. Then we 
calculated the IoU metric on the experimental spectra for fully 
optimized systems and on spin system matrices downloaded 
from GISSMO. The results of the comparison are shown in 
Table 4.

As can be seen from the table, IoU metrics calculated using 
our optimized spin-system parameters are more than metrics 
calculated using J matrices from GISSMO for all studied spectra. 
Due to the presence of noise, impurities, and asymmetry 
caused by nonuniformity of the constant magnetic fi eld in the 
real spectra, all calculated metrics are less than 1. Nevertheless, 
most of the metrics calculated for optimized parameters are 
more than 0.9. The lowest IoU value was obtained for the 
spectrum of glycine, which contains only one peak (see 
GISSMO); therefore, solving the optimization problem here is 
generally unnecessary. Thus, our proposed algorithm allows 
us to effectively optimize the matrices of spin systems and 
produce better results than manual optimization.

For a further justifi cation of the loss function and metric 
used, the estimated spectra obtained in the optimization modes 
indicated above (i.e. ”Full optimization”, ”fi x J”, ”Fix J and r”, 
”Fix r” like it was used in Table 3) are also compared with the 
ground-truth data in terms of classic loss functions MSE, MAE, 
RMSD. The spectrum of the ProlineGISSMO-499.84MHz-
bmse000047 metabolite was used for comparison. Table 5 
presents the comparison results. It can be seen from the results 
obtained that optimizing the parameters of the spin system 
in terms of the selected loss function 6 also improves quality 
in terms of classical loss functions (which, with precision 

to the sign, can also be considered as quality metrics in this 
context). The result obtained justifi es the use of the selected 
loss function.

Conclusion

The obtained data allow us to conclude that our method 
gives results better than known open-source solutions, while 
not requiring manual processing. IoU metrics calculated for spin 
system parameters optimized for fi ve different NMR spectra 
of L-Proline demonstrate better results than for spin systems 
with fi xed J obtained from [30] and ChenomX. In addition, we 
demonstrate better optimization of spin system parameters 
for the spectra of the most common amino acids available in 
the GISSMO [18] database. The obtained model and parameters 
of the spin systems of metabolite molecules can be used to 
automate the determination of metabolite concentrations in 
biological samples and signifi cantly accelerate and simplify the 
analysis of samples in the fi eld of NMR metabolomics.

Data availability

The code and associated data used in this study are openly 
available in the GitHub repository.
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Table 4: Comparison IoU metric of other metabolites with our solution and GISSMO 
solution.

Metabolite
Full 

optimization
GISSMO solution

L-Alanine 0.936 0.935

L-Arginine 0.955 0.908

L-Asparagine 0.947 0.789

L-Aspartate 0.958 0.949

L-Glutamate 0.943 0.891

L-Glutamine 0.930 0.919

L-Glycine 0.821 0.819

L-Histidine 0.870 0.513

L-Isoleucine 0.913 0.863

L-Leucine 0.854 0.768

L-Lysine 0.929 0.884

L-Methionine 0.935 0.748

L-Phenylalanine 0.935 0.822

L-Proline 0.955 0.844

L-Serine 0.922 0.880

L-Threonine 0.872 0.738

L-Tyrosine 0.933 0.858

L-Valine 0.949 0.855

Table 5: Comparison of classic loss functions for different optimization modes.

Loss function Full optimization Fix J ([30]) Fix J([30]) and r Fix  r

MSE 1.2 · 10−9 4.4 · 10−9 1.9 · 10−9 1.6 · 10−9

MAE 1.1 · 10−5 1.5 · 10−5 2.5 · 10−5 2.3 · 10−5

RMSD 3.5 · 10−5 6.6 · 10−5 13.9 · 10−5 12.5 · 10−5
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